Solid solution studies in the MgO-LiAIO₂ system

R. C. DOMAN, R. N. MCNALLY

Ceramic Product Development, Corning Glass Works, Corning, New York, USA

Experimental data in the MgO-LiAlO₂ system indicates that about 53 wt % LiAlO₂ can enter the MgO lattice in solid solution at 1600°C, an increase of 7.5 wt % over the solid solution phase at 1500°C. The data also indicates that the periclase lattice retains about 41%LiAlO₂ at temperatures lower than 1400°C. Data indicates that there is probably no solid solution of MgO in LiAlO₂. The proposed phase diagram for the MgO-LiAlO₂ system is presented with an estimated eutectic composition of 17 wt % MgO-83 wt % LiAlO₂ and a melting point of ~ 1625°C.

1. Introduction

In the past it was shown that stable periclase solid solutions could be produced by adding Li_oO to MgO-chrome ore mixtures [1]. Previously Kordes [2], reported that LiFeO₂, and Kordes and Petzoldt [3] showed that LiCrO₂, could enter the periclase lattice to form solid solutions. Doman, Alper, and McNally [1] reported that the addition of Li₂O to MgO-Al₂O₃ compositions produced stable periclase solid solutions. Previous studies in the MgO-MgAl₂O₄ system [4] indicated that 18% Al₂O₃ could enter the periclase lattice in solid solution at $1995^{\circ}C \pm 15^{\circ}C$. However, upon heating at lower temperatures, the solid solutions were not stable and unmixing occurred in the form of small spinel spheres in the periclase. When adding Al₂O₃ in the form of the compound LiAlO₂, the maximum amount of alumina that can enter the periclase lattice increases to about 41%. These periclase solid solutions are more stable than those produced in the MgO-MgAl₂O₄ system. The present study defines the limits of solid solution of LiAlO₂ in MgO. A tentative phase equilibria diagram is proposed for the MgO-LiAlO₂ system based on the solid solution studies and data available from the literature.

2. Experimental procedures

Raw materials employed for this study are 99.0 % or better in purity and are listed in Table I. Lithium aluminate spinel was prepared by reacting the correct amounts of Li_2CO_3 with the Al_2O_3 . Chemical analyses and X-ray diffraction © 1973 Chapman and Hall Ltd.

TABLE I Raw materials

Material	Supplier			
Reagent Grade MgO	J. T. Baker Co			
Alucer Al ₂ O ₃	Compagnie General D'Electro			
	Ceramique			
Purified Powder Li ₂ CO ₃	J. T. Baker Co			

revealed that the LiAlO₂ structure was produced at the correct stoichiometry.

Mixtures of MgO and LiAlO₂ were heated by two methods; induction furnaces for temperatures above 1500°C, and platinum-wound tubular furnaces for temperatures at 1500°C and lower. For the specimens fired in the induction furnaces, an argon atmosphere was maintained by flowing 10 litres per min of argon over the specimen. This procedure has been described in a previous paper [5]. Temperature measurements in this furnace were obtained with an optical pyrometer, whereas the temperatures in the platinum tubular furnaces were measured with Pt/10 Rh thermocouples.

During the initial experiments, it was evident that with prolonged heating at $\geq 1500^{\circ}$ C lithia was being lost by vaporization. To eliminate this problem, mixtures of MgO and LiAlO₂ were compacted in $\frac{1}{4}$ in. diameter platinum tubes, and the tubes were hermetically sealed by welding the ends. Because of the platinum tubes, the solid solution studies were limited to a maximum temperature of 1600°C. Experimental difficulty (vaporization of Li₂O) was encountered above

Wt %		Temperature (°C)	Hours	Phases	Unit cell (Å)
MgO	LiAlO ₂				
100.0			_	MgO	4.2124
89.7	10.3*	1500	15	MgO s.s.	4.191
79.8	20.2*	1500	15	MgO s.s.	4.165
64.0	32.0*	1500	15	MgO s.s.	4.141
58.4	41.6*	1500	15	MgO s.s.	4.118
53.6	46.4*	1500	15	MgO s.s., LiAlO ₂	4.110
48.6	51.4*	1500	15	MgO s.s., LiAlO ₂	4.110
40.0	60.0	1500	15	MgO s.s., LiAlO ₂	4.108
40.0	60.0	1600	15	MgO s.s., LiAlO ₂	4.092
40.0	60.0	1400	15	MgO s.s., LiAlO ₂	4.119
40.0	60.0	1300	21	MgO s.s., LiAlO ₂	4.119
40.0	60.0	1000	15	MgO s.s., LiAlO ₂	4.120
40.0	60.0	800	16	MgO s.s., LiAlO ₂	4.121

TABLE II Solid solution specimens

*Actual values from wet chemical analyses. Other listed values are batched compositions.

that temperature which prevented complete liquidus and solidus studies.

Unit-cell dimensions were calculated from high-angle diffraction peaks with a G.E. XRD-5 diffractometer. All of the compositions in this article are listed as percentages by wt.

3. Solid solution studies

Mixtures of MgO and LiAlO₂ were prepared in the proportions listed in Table II. After the powders were compacted and sealed in the platinum tubes, they were placed in the platinumwound tubular furnaces at the temperatures listed in Table II. Following the heat-treatments for the designated times, the specimens were air-quenched.

The relationship of unit-cell dimensions, Table II, to the amount of LiAlO_2 in solid solution in the periclase lattice was established with various mixtures heated to 1500° C for 15 h. From the curve in Fig. 1, it is evident that the maximum amount of LiAlO_2 observed in solid solution at 1500° C is 45.5%. Specimens containing higher amounts of LiAlO_2 resulted in essentially equivalent unit-cell dimensions (~ 4.109Å) for the MgO solid solution phase and, in addition, contained the LiAlO₂ phase.

One specimen, 40% MgO-60% LiAlO₂, was heated in a sealed platinum container at 1600°C to determine whether the periclase could take even more LiAlO₂ into solid solution at higher temperatures. This point is also plotted in Fig. 1, and it indicates that about 53% LiAlO₂ can enter the periclase lattice in solid solution at 1600°C, an increase of 7.5% over the 1500°C solid

Figure 1 Unit cell dimensions of MgO-LiAIO₂ solid solutions.

solution phase. Because of the temperature limitations of the platinum containers and the rapid volatilization of Li_2O at higher temperatures in the furnace atmosphere, no attempt was made to study the solid solution phase above 1600°C .

Studies were also done at lower temperatures, 1400 to 800°C, to determine the stability of the periclase solid solution phase. For these studies a 40% MgO-60% LiAlO₂ mixture was first heated at 1500°C to produce the periclase solid solution phase. The specimens were then heated to lower temperatures listed in Table II. Unitcell dimensions for those specimens were essentially equivalent, 4.120Å, and indicated that 41.0% LiAlO₂ remained in solid solution at temperatures ranging from 800 to 1400°C.

4. Proposed MgO-LiAlO₂ phase equilibria diagram

Attempts were made to define the liquidus of the MgO-LiAlO₂ system, but X-ray diffraction patterns obtained from the specimens fused in the induction furnaces indicated severe loss of Li₂O. Even though the melting temperatures were not valid, there was an indication that the eutectic is located in proximity to the 17% MgO-83% LiAlO₂ composition. Values for the melting points of MgO, 2825°C [5], and LiAlO₂, 1700°C [6], were obtained from the literature. Since no melting was observed in the specimen prepared at 1600°C for the solid solution study, and since the melting point of LiAlO₂ is reported at 1700°C, the eutectic melting point was estimated to be near 1625°C.

The subsolidus was defined for the periclase solid solution phase in the studies reported in the above section. Since the major effort was to define the limits of the LiAlO₂ solid solution in the periclase lattice, limited time was spent to determine whether MgO entered the LiAlO₂ lattice in solid solution. One specimen (90% LiAlO₂-10% MgO) was heated at 1500°C for 15 h and the X-ray diffraction pattern of the air-quenched specimen gave the same peak positions as those of the pure LiAlO₂. In addition the MgO solid solution phase was easily detectable in the diffraction pattern. Thus, this one experiment suggested that there is probably no solid solution of MgO in LiAlO₂.

The tentative phase diagram for the MgO-LiAlO₂ system presented in Fig. 2 was constructed from the solid solution data and the speculations made with the available information.

5. Summary

It has been shown that up to 53% of LiAlO₂ can enter the periclase lattice in solid solution. A

Figure 2

tentative phase equilibria diagram was constructed, based on the solid solution studies and data available from the literature.

Acknowledgements

The authors would like to thank Mr K. E. Zaun for his help in sample preparation and for the collection of X-ray diffraction patterns; Mr P. R. Smith and Mr F. Belles for sample preparation and heat-treatment experiments. Dr I. E. Lichtenstein kindly provided the chemical analyses data.

References

- 1. R. C. DOMAN, A. M. ALPER, and R. N. MCNALLY, J. Mater. Sci. 3 (1968) 590.
- 2. E. KORDES, L. Kristallogr. Mineralog. Petrogr. 92A (1935) 1939.
- 3. E. KORDES and J. PETZOLDT, L. Anorg. Ally. Chem. 335 (1965) 138.
- 4. A. M. ALPER, R. N. MCNALLY, P. H. RIBBE, and R. C. DOMAN, J. Amer. Ceram. Soc. 45 (1962) 263.
- 5. R. N. MCNALLY, F. I. PETERS, and P. H. RIBBE, *ibid* 44 (1961) 491.
- 6. D. W. STRICKLER and R. ROY, ibid 44 (1961) 225.

Received 12 July and accepted 11 August 1972.